Microbial populations analysis and field application of biofilter for the removal of volatile-sulfur compounds from swine wastewater treatment system.
نویسندگان
چکیده
A biofilter packed with granular activated carbon (GAC) was applied to eliminate volatile-sulfur compounds (VSC) emitted from solid-liquid separation tank in swine wastewater treatment system. Hydrogen sulfide, methanethiol, dimethyl disulfide, and dimethyl sulfide were effectively reduced to 96-100% at gas residence times of 13-30s. Elemental sulfur and sulfate are their primary oxidation metabolites. Regarding odor, an average of 86% reduction was achieved at short residence time (13s). In addition, bioaerosol emissions could also be effectively reduced by 90% with the biofilter. Advantages of the system include low moisture demand, low pressure drop, and high biofilm stability. Further characterization of bacterial populations of the activated carbon samples using the fluorescent in situ hybridization (FISH) technique revealed that Pseudomonas sp. remained the predominant community (56-70%) after long-term evaluation of 415 days.
منابع مشابه
Mathematical Modeling for Volatile Organic Compounds Removal in a Biofilter: Model Validation and Sensitivity Analysis
متن کامل
Hydrogen Sulphide Removal Using a Novel Biofilter Media
Air emissions from waste treatment plants often consist of a combination of Volatile Organic Compounds (VOCs) and odors. Hydrogen sulfide is one of the major odorous gases present in the waste emissions coming from municipal wastewater treatment facilities. Hydrogen sulfide (H2S) is odorous, highly toxic and flammable. Exposure to lower concentrations can result in eye irritation, a sore throat...
متن کاملPhosphorus Removal from Dairy Wastewater in Batch Systems under Simultaneous Aerobic/Anaerobic Conditions: Application of Response Surface Methodology
The objective of this paper is simultaneous of aerobic and anaerobic process for phosphorus removal from a dairy wastewater. The system consists of a granular sequencing batch reactor (SBR) working under alternating aerobic/anaerobic conditions. In order to analyze the process, four significant variables viz. MLSS, COD/N ratio, aeration time and cycling time and four dependent parameters as the...
متن کاملApplication of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment
Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...
متن کاملComparative Metagenomic Analysis of Electrogenic Microbial Communities in Differentially Inoculated Swine Wastewater-Fed Microbial Fuel Cells
Bioelectrochemical systems such as microbial fuel cells (MFCs) are promising new technologies for efficient removal of organic compounds from industrial wastewaters, including that generated from swine farming. We inoculated two pairs of laboratory-scale MFCs with sludge granules from a beer wastewater-treating anaerobic digester (IGBS) or from sludge taken from the bottom of a tank receiving s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 152 2 شماره
صفحات -
تاریخ انتشار 2008